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Abstract

Traditional Web3 user flows require connecting wallets, approving token al-
lowances, and signing numerous transactions. This approach can be cumbersome
and intimidating for newcomers, ultimately limiting the wider adoption of blockchain.
The mechanism proposed in this paper reimagines this process by introducing In-
struction Specific Address (ISA), a one-time address generated specifically for each
user action. Through deterministically generated addresses, ISAs decouple user
wallets from DApps, enabling approval-less, friction-less transactions. This reduces
the complexity of approvals, mitigates phishing vectors, and allows a more familiar
Web2-like user experience while retaining the trustless nature of blockchain inter-
actions.
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1 Introduction

1.1 Problem Statement

1.1.1 Poor UX

Despite dynamic and visually appealing interfaces, Web 3.0 inherently suffers from poor
user experience due to the number of steps required to perform a single transaction.
Interacting with a DApp involves connecting a wallet, signing an approval transaction,
and then signing the main transaction (such as a swap, stake, etc.).

1.1.2 Security Issues

Interacting with DApps using wallets is highly risky due to approval vulnerabilities,
phishing attacks, and other forms of hacks exploited within Web 3.0.

1.2 Defining an ISA

An Instruction-specific Address (ISA) is a deterministically generated single-purpose con-
tract address generated with minimal context needed to execute a specific user operation.
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Once the operation completes or fails, the ISA self-destructs, refunding any remaining
balance to the designated recipient and freeing up blockchain resources.

1.3 How ISA Solves the Problems

1.3.1 Security

By eliminating direct wallet connections from DApps, ISA makes users far less susceptible
to phishing and malicious contract calls. Each ISA is ephemeral (self-destructs after use),
thereby limiting the maximum risk of the user to the specific amount transferred for that
interaction.

1.3.2 UX

Users can ‘scan and pay’ in a Web2-like manner, simply transferring assets to an address
for immediate use without plug-in-based wallet connections. This method is also compat-
ible with centralized exchanges (CEX) wallets, bridging the gap between custodial and
non-custodial experiences.

2 ISA Architecture

2.1 Overview

The architecture of ISA consists of the following components:

2.1.1 ISAFactory Contract:

This contract generates deterministic addresses via CREATE2 and enforces a consistent
initialization code. It exposes a generateAddress() function that takes a unique salt

and ISA contract bytecode.

2.1.2 CallOps Structure

This is a standardized object that contains the target contract , source token, execu-
tion data, potential approvals and a fallback refundRecipient. The CallOps structure
ensures a consistent interface that wallets, DApps, and relayers can rely upon.

2.1.3 ExecutionContract (Executor)

As the name suggests, the ExecutionContract executes the desired logic and refunds
unspent balances.

2.1.4 Relayers

These are entities that process ISA operations and maintain fluid user interactions.
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2.2 Deterministic Address Generation

ISA relies on the CREATE2 opcode to guarantee unique, predictable addresses. This pro-
cess hashes together:

• The sender (factory) address

• A user-provided salt

• The initialization code’s hash

3 Core Mechanics

3.1 CallOps Data Structure

struct CallOps {

address targetAddress;

address approvalAddress;

bytes executionData;

address sourceToken;

address refundRecipient;

uint256 amount;

}

• targetAddress: Contract to interact with.

• approvalAddress: If token transfers need an approval step.

• executionData: Encoded call data for logic execution.

• sourceToken: The token used in the operation.

• refundRecipient: Address receiving leftover funds upon failure.

• amount: Amount of the source tokens to be sent by the user.
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4 Lifecycle of an ISA Interaction

Figure 1: ISA Lifecycle Diagram

Below is a high-level sequence of a typical ISA transaction lifecycle:

1. User Input and Address Generation: The user specifies the action to perform
and requests a new ISA from the ISAFactory.

2. Transfer of Funds: The user sends the required assets to the ISA address.

3. Execution: A relayer monitors ISA deposits; once a deposit is detected to the
ISA, it deploys the contract, and executes the logic.

4. Refund on Failure: If the operation fails, the ISA returns the unspent assets to
the refundRecipient.

5. Self-Destruct: Regardless of success or failure, the ISA self-destructs, ensuring
one-time usage and preventing future exploit vectors.
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5 Legacy DApp Interaction Flow vs ISA Flow

5.1 Legacy DApp Interaction Flow

Figure 2: Legacy Flow Diagram

5.1.1 Wallet Connection

The user first has to connect their wallet (e.g., MetaMask, Coinbase wallet) to the DApp.
This often involves navigating through a browser plug-in or a mobile app and granting
the DApp access to the wallet address.

5.1.2 Token Approvals

Before using any DApp functionality (e.g., swapping tokens, purchasing NFTs), the user
must approve the DApp’s smart contract to spend tokens on their behalf. These approvals
are often infinite, covering an entire token balance unless manually limited. Approvals
involve an additional on-chain transaction that the user must confirm in their wallet,
adding friction.

5.1.3 Executing the DApp Transaction

Once approvals are set, the user can initiate the main DApp transaction (e.g., token
swap, mint, deposit) through the wallet. The DApp transaction is broadcasted to the
blockchain, and the user must confirm the transaction details again in their wallet.

5.1.4 Result

If everything succeeds, the DApp updates user balances or triggers the desired action on-
chain. If the DApp requires more interactions, the user may need additional approvals
or confirmations.
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5.2 ISA Flow

Figure 3: ISA Flow Diagram

5.2.1 Instruction Specific Address (ISA) Generation

Instead of connecting a wallet directly to the DApp, the user is provided a single-use
contract address - this address can be displayed on the UI as a QR code or as a plain
address.

5.2.2 Token Transfer to the ISA

The user sends the exact amount of tokens required for the intended DApp interaction
directly to the ISA. No DApp-specific “approval” transaction is needed. The transferred
tokens are effectively “pre-approved” for the DApp logic by virtue of living inside this
dedicated address.

5.2.3 Trigger DApp Transaction

Once the ISA receives the tokens, a relayer deploys the ISA contract, and the designated
function or operation is automatically triggered. The ISA contract acts as the executor
of the transaction, sending the tokens to the target contract according to the user’s
instructions. Since the relayer is typically responsible for deploying the ISA contract,
there is a risk of failure if the relayer does not trigger it. To circumvent this issue and
ensure trustlessness, anyone can trigger the factory contract function to deploy the ISA
contract and consequently execute the designated calldata.

5.2.4 DApp Transaction Execution

The DApp contract receives the tokens from the ISA and completes the user’s request.
On completion, the ISA self-destructs, returning any unused funds to a designated refund
recipient.
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5.2.5 Result

The user’s desired action is carried out on-chain, all without requiring ‘token approvals’
from a personal wallet. The entire user experience is streamlined to a single deposit action.

Advantages of ISA Description

Approval-less Users do not have to grant indefinite token allowances; each
ISA interaction involves only the specific assets needed for
that transaction.

Enhanced Security The maximum capital at risk is confined to the assets trans-
ferred into the ISA. DApps have no direct access to user wal-
lets, drastically reducing the impact of phishing or malicious
calls.

Frictionless UX Feels like a Web2 payment flow (“scan and pay”). Reduces
the barrier for non-crypto-native users who prefer a simple
transfer to an address, rather than installing plugins or signing
multiple transactions.

Broad Compatibility Works with centralized exchange (CEX) wallets. Operates
seamlessly across EVM-based blockchains and can be ex-
tended to non-EVM chains with the same principle.

Table 1: Advantages of ISA

6 Use Cases

6.1 eCommerce and Merchant Gateways

• Seamless Crypto Payments: Accept payments in crypto (native or tokens) with-
out requiring customers to manage multiple approval steps.

• Automated Workflows: The merchant’s DApp or business logic can fetch real-
time status updates by polling the status from the contract or from a third party
service. Once it receives the confirmation of deposit, order fulfillment or other
workflow automations can be triggered.

6.2 Decentralized Exchanges (DEXs)

Users can perform token swaps by transferring tokens to an ISA that automatically
handles execution logic (e.g., routing, slippage management). Since ISA eliminates the
need for prior token allowances, user friction is reduced.

6.3 Telegram Mini Apps

ISA can underpin Telegram mini apps allowing users to perform crypto transactions
directly from lightweight interfaces. By enabling in-app transactions, projects can ensure
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their users never have to leave their interface even for complex DeFi actions like staking
and yield mining.

6.4 Chain-Abstracted DApps

Projects can design front-ends that abstract away specific chain interactions. Users need
only specify their ‘intent’ (e.g., swap, purchase) and send assets to an ISA.

7 Security and Risk Management

7.1 Minimal Exposure

The temporary nature of ISAs ensures that any vulnerabilities or exploits cannot persist.
Once the transaction completes, the address self-destructs. Users’ primary wallets remain
protected. If a DApp is malicious, it only receives the specific funds in the ISA.

7.2 Refund Mechanics

Each ISA has a fallback address in case of failures, ensuring that the unused assets are sent
back to the user. The ExecutionFailed and RefundIssued events provide an auditable
trail of any returned assets.

7.3 Target Contract Considerations

Target contracts that rely on msg.sender for core logic or ownership checks should ensure
they handle calls from any address (in this case, the ISA). DApps integrating the ISA
framework should also be audited to ensure robust parameter validation and secure fund-
handling logic.

8 Roadmap & Future Developments

• Relayer Ecosystem: Building standardized frameworks for multiple relayers to
compete or collaborate in providing gas and execution services.

• Developer Tooling & SDK: Providing out-of-the-box libraries and developer
tools to make ISA deployments straightforward, including minimal code for facto-
ries, initialization logic, and UI components.

• Security Modules & Insurance: Potential add-on modules for additional cov-
erage or bonded relayers that guarantee execution fidelity.

9 Conclusion

The Instruction Specific Address (ISA) standard offers a simple approach to enable user
interactions within the decentralized ecosystem. By limiting user risk, removing the need
for approvals, and providing a frictionless payment-flow experience, ISAs align Web3
with a more intuitive “Web2-like” product philosophy—while retaining trustlessness and
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composability. Furthermore, the standard is designed with a clear path to bridge the gap
between custodial and non-custodial wallets, benefiting the entire ecosystem.
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