rStake 1.0

Shubham Singh, Vatsal Gupta

shubham@routerprotocol.com, vatsal@routerprotocol.com

Abstract

This paper introduces rStake, a powerful primi-
tive built on Router’s Cross-chain Intent Frame-
work (CCIF) that unlocks seamless, cross-chain lig-
uid staking possibilities. By leveraging CCIF’s modu-
lar architecture, rStake empowers developers to inte-
grate diverse liquid staking protocols — Stader, Lido,
Ankr, Swell, Metapool, Benqi, and countless others
— within their applications, thereby enabling users to
effortlessly stake their assets across chains. rStake is
one of the earliest primitives built using Router’s in-
tent framework tooling, paving the way for a future
where developer creativity fuels diverse and innova-
tive blockchain applications.

1 Background

Liquid staking empowers users to earn staking re-
wards while retaining their asset liquidity. However,
within the current ecosystem, liquid staking is viable
only for same-chain users, i.e., only users with funds
on Ethereum can stake on protocols like Lido, Swell,
while only users with funds on Avalanche are able to
stake on Benqi. For users with funds on other chains,
liquid staking on these protocols is highly inefficient.
Users face challenges like navigating multiple plat-
forms, engaging in multiple transactions, huge wait
times, high gas costs, among others.

Additionally, there is 5M+ ETH in circulation on
L2s like Arbitrum, Optimism, Base, among others,
with no viable liquid staking venue. If any user on
these L2s wanted to liquid stake on Ethereum within
the current setup, it would typically involve around
27 clicks, interaction with 3 different dApps, 6 wallet
interactions, and up to 15 minutes of effort. To ac-
complish a task like staking on Lido, users must be
familiar with multiple blockchain networks, possess
their respective gas assets, or know the processes for
acquiring these assets. Furthermore, a comprehen-
sive understanding of bridges for asset transfer and
proficiency in navigating decentralized exchanges or
aggregators is imperative. This intricacy and time

investment significantly impede user experience and
accessibility within the blockchain ecosystem.

2 Introducing rStake

Powered by Router’s Cross-chain Intent Framework
(CCIF), rStake is a liquid staking primitive that en-
ables developers to build seamless cross-chain liquid
staking applications with ease.

2.1
2.1.1 Router Multicall Adapter

Components

The Multicall adapter is a smart contract that can in-
voke multiple intent adapters. Using Multicall, devel-
opers can build applications spanning multiple intent
primitives - for example, using rStake Stader adapter
to stake into Stader and then using a Lending adapter
to lend the resultant ETHx on a lending platform.

2.1.2 rStake Intent Adapters

rStake adapters are specialized smart contracts that
connect rStake to individual liquid staking protocols.
For example, a Lido intent adapter can be used to
stake user funds into Lido. Here are the two functions
that handle a liquid staking request:

1. execute: This function is present in every rStake
adapter and is expected to handle the data re-
ceived from the Multicall adapter. Within this
function, the adapter decodes the data received,
receives the funds and calls the _stake function.

2. _stake: This function is responsible for calling
the designated liquid staking pool, staking the
asset and transferring the liquid staking token
back to the user/recipient.

2.1.3 rStake Intent Solver

The rStake solver is a crucial part of the rStake frame-
work that allows rStake to find the best route for any
liquid staking request.

e Path Discovery: rStake solver explores all the
potential execution routes for a chosen route, like
staking on a specific chain.

e Multi-Criteria Decision Making: It ana-
lyzes and selects the optimal path using ad-
vanced algorithms, considering factors like fees,
estimated time, and security.

e Calldata Generation: Generates transaction
data (call data) for each adapter involved in a
chosen path, ensuring smooth interactions across
different protocols.

e Future-proof Design: Built for expandability,
rStake solver can easily be configured to index
other intent adapters. For example, the rStake
Solver can be configured to generate paths for
a transaction that involves liquid staking and
lending of the liquid staked asset on a lend-
ing/borrowing protocol.

2.1.4 Router Nitro

A trustless, ultra-low latency bridge that is used by
rStake to transfer user funds across chains. Thanks
to Nitro’s low latency bridging and asset 4+ mes-
sage transfer capability, rStake can resolve cross-
chain staking requests in less than 1 minute.

2.2 Features
2.2.1 Improved DeFi Accessibility

By enabling seamless cross-chain transactions and in-
teractions, rStake can help in consolidating the cur-
rently fragmented ecosystem and facilitate the adop-
tion and development of cross-chain solutions.

2.2.2 Simplified Dapp Development

Building new decentralized applications presents sig-
nificant complexity and technical barriers, particu-
larly for new developers. To address this, rStake of-
fers streamlined tools (rStake adapters and solver) for
creating derived applications.

2.2.3 Composable

By leveraging existing rStake adapters, developers
can design applications with custom staking flows and
functionalities unique to their users’ needs.

2.2.4 Permissionless

Any developer can create adapters for new and
emerging liquid staking protocols, expanding the
rStake ecosystem and user benefits.

2.3 Leveraging rStake within a User-
facing Application

As mentioned in the previous section, any developer
can use r3take to generate cross-chain applications
with varying use-cases. rStake abstracts things to
such a level, that to build a user-facing application,
all a developer needs to do is deploy a Ul and invoke
the rStake solver from that UIl. Depending on the
use-case, some modifications to the solver might be
required (in case you want to add lending on top of
liquid staking or add any other feature), but rStake
will provide all the essential facets of the application
to you.

2.3.1 Workflow

Let’s take a look at how the flow will look like for the
users of your cross-chain liquid staking application.
Suppose a user with USDC on Polygon wants to stake
on Benqi (Avalanche) using your platform.

Step 1) User deposits USDC on Polygon.

Step 2) Your custom UI queries the rStake solver
with the user’s input

Based on the user’s source asset and desired
liquid staking platform, the rStake solver
identifies the most optimal route for exe-
cuting the user’s request. The pathfinder
generates the execution calldata and sends
it to your UI along with the entry point
contract.

Step 3)

Step 4) Your custom Ul invokes the entry point con-
tract, which in this case is the Router Nitro

bridge contract.

Router Nitro converts USDC to AVAX and
transfers it to Avalanche along with the in-
structions to stake on Bengi.

Step 5)

Upon receiving the instructions, the Multi-
call adapter delegates AVAX staking to the
Benqi liquid staking adapter.

Step 6)

Step 7) Bendi liquid staking adapter stakes AVAX

on Bengqi’s contracts.

Step 8) Benqi sends sAVAX to the Multicall

adapter.

Step 9) The Mutlicall adapter provides sAVAX to

the user on Avalanche.

Step 2

[] Custom Ul by
—>
Step 1 Developer

User Step 3

rStake Solver

Router Nitro

Step 4

Step 6

Bengi Liquid
Staking Adapter

Step 5 Multicall Adapter

on Avalanche

Bengqi Contract

Step 9

Step 8

Figure 1: Application Workflow with rStake

3 Security

All the rStake adapters are designed to be stateless,
meaning they never hold user funds at any point dur-
ing the execution process. This minimizes the attack
surface and eliminates the risk of funds being compro-
mised within the rStake infrastructure. Furthermore,
for unparalleled transparency and trust, all rStake
smart contracts, including the Multicall and individ-
ual intent adapters, have undergone rigorous security
audits. This commitment to secure coding practices
helps rStake maintain the highest security standards.

4 Future Work

4.1 Optimizing rStake Solvers

Continuously testing and analyzing the performance
of the current multi-criteria decision making algo-
rithm is essential. Identifying areas of inefficiency
or inaccuracy can lead to the development of more
advanced algorithms, ensuring more optimal path se-
lection for user intents.

4.2 Decentralization of rStake Solvers

The centralization of rStake intent solver systems
presents risks like single points of failure and re-
duced resilience. In the future, we will implement
a peer-to-peer (P2P) network for Solver systems that
can significantly improve fault tolerance. This net-
work would distribute both the processing load and
decision-making, thus enhancing the system’s re-
silience against single-point failures and central con-
trol issues, leading to a more robust and reliable
framework.

4.3 Non-EVM Adapters

Currently, rStake primarily supports EVM intent
adapters out-of-the-box (along with a few Near
adapters). In the next few months, we’ll develop
and add adapters for Cosmos chains and Move-based
chains.

4.4 Generalized Solver

We plan to develop a generalized solver that can
seamlessly integrate with both EVM (Ethereum Vir-
tual Machine) and non-EVM based adapters. This
would significantly broaden the primitive’s applica-
bility and interoperability across diverse blockchain
ecosystems.

Conclusion

rStake is poised to revolutionize the liquid staking
landscape, offering unprecedented flexibility, acces-
sibility, and control. By harnessing the power of
Router’s CCIF and its open-source adapter toolkit,
rStake empowers users and developers to unlock the
full potential of cross-chain liquid staking. This is
just the beginning of a transformative journey — a
journey where user intent drives the execution of pow-
erful blockchain-based actions, ushering in a new era
of innovation and user empowerment.

	Background
	Introducing rStake
	Components
	Router Multicall Adapter
	rStake Intent Adapters
	rStake Intent Solver
	Router Nitro

	Features
	Improved DeFi Accessibility
	Simplified Dapp Development
	Composable
	Permissionless

	Leveraging rStake within a User-facing Application
	Workflow

	Security
	Future Work
	Optimizing rStake Solvers
	Decentralization of rStake Solvers
	Non-EVM Adapters
	Generalized Solver

